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Abstract
The objective of this experiment was to explore the possible effect of low intensity pulsed ultrasound (LIPUS) on the 

osteogenic differentiation of harvested passage-4 Human umbilical cord peri-vascular cells (HUCPV-Cs). HUCPV-Cs 
were divided into two groups: a treatment group that received LIPUS for 10 minutes for 1, 7 and 14 days and a control 
group that received a sham treatment utilizing osteogenic media. The results demonstrated nonsignificant differences 
in cell count, ALP, DNA content, and CD90. Statistically significant expression of OPN and PCNA was observed on 
day 14 in the LIPUS treated group. Nucleostemin expression in the LIPUS-treated group was nonsignificant on days 
1 and 7. However, a selective increase in the osteogenic markers was observed in the LIPUS treated group on day 7 
for ALP and OCN and on day 14 for OPN. Future experiments are required to explore the possible effects of different 
application times and/or techniques of LIPUS on the behaviour of HUCPV-Cs.
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Introduction
Mesenchymal stem cells represent a promising future for medicine 

[1,2]. They introduce a new tool for clinical concepts that support 
cellular therapy [1,2]. Obtaining MSCs from bone marrow is an 
invasive procedure [1,3]. Frequency, differentiation potential, and life 
span of bone marrow-MSCs decrease with age [4-6]. Therefore, many 
researches have been investigated an alternative source for mesenchymal 
stem cells in order to find a cure for many ailments [6]. It has been 
shown that cryopreserved umbilical cord blood from unrelated donors 
is a safe source of transplantable hematopoietic stem cells for clinical 
transplantation [6]. They reported that those cells have high rate of 
engraftment and low rate of grade III- IV acute graft versus host disease 
(GVHD) and even in recipients of human leukocyte antigens (HLA) 
unrelated grafts are remarkable [6]. Umbilical cord cells have been 
progressively used as an alternative source for hematopoietic stem cells 
(HSC) for allogenic stem cell transplants [3-8]. It has been reported 
that MSCs from bone marrow, umbilical cord blood and adipose tissue 
can achieve a success in stem cell therapy [9]. Their clinical application 
may be based on their capacity of differentiation, but much more on 
their frequency, and expansion potential [9]. However, the lack of 
common standards for initial cell preparation remains an obstacle for 
standardization of research methodology and the clinical application of 
umbilical cord-MSCs [10,11]. 

“Mesenchymal stem cells derived from the umbilical cord vein are 
functionally similar to bone marrow MSCs” [12]. Isolation of umbilical 
cord MSCs (UCMSCs) is less invasive than bone marrow derivations, 
and because of the fetal origin of UCMSCs, their proliferative and 
differentiation potential provide an excellent resource [12]. In a 
comparative study, it has been documented that human umbilical cord 
perivascular cells (HUCPV-Cs) have higher capacity of differentiation 
and proliferation than bone marrow MSCs [13]. In addition, HUCPV-
Cs were shown to have a faster rate of osteogenic differentiation 
compared to bone marrow MSCs [13]. Umbilical cord provides a 
pool of cells of vast abundance, and with the advantage of less donor 
site morbidity [14]. Gang et al. reported that umbilical cord blood 

derived cells (UCB-DCs) express high potential to differentiate into 
variety of mesenchymal linages cells [15]. He also claimed that UCB-
DCs is an excellent substitute source for human-MSCs [15]. Human 
umbilical cord stromal cells express almost the same characteristics of 
mesenchymal stem cells [16,17]. It has been reported that the umbilical 
cord stromal cells shows high capability to differentiate into osteogenic, 
adipogenic, cardiomyogenic, and chondrogenic cell types [16]. A new 
technique for harvesting, culturing, and osteogenic differentiation of 
HUCPV-Cs has been reported [18]. Ultimately, the blood that remains 
inside the human umbilical cord is usually considered a valid source of 
hematopoietic stem cells [19,20]. Furthermore, Kim et al. reported that 
umbilical cord blood is an excellent source of profound mesenchymal 
progenitor cells (MPCs) characterized by the capacity for self-renewal 
and differentiation into multiple lineages which make them comparable 
to the same cells (MPCs) from different origin [21]. Goodwin et al. 
proven that umbilical cord blood cells are a potential source of cells for 
multiple organ cellular therapeutics [22].

Many reports have demonstrated that LIPUS enhances bone 
remodeling and bone formation as well as it decreases healing time 
[23-32]. Mechanical stresses have been reported to enhance activities 
of osteoclasts and osteoblasts leading to increase bone remodeling and 
bone regeneration, respectively [33]. Different forms of mechanical 
stress such as LIPUS have been clinically tested for their ability to 
enhance new bone formation [34]. 

Acceleration of fracture healing by LIPUS was attributed to 
the pressure waves that trigger a complex series of biochemical and 
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molecular events at the cellular level [35]. An increase in alkaline 
phosphatase (ALP) activity was detected in human osteoblast cultures 
after continuous exposure to the low intensity pressure waves of LIPUS 
[36]. 

This study investigated whether LIPUS has a stimulatory effect on 
osteogenic differentiated HUCPV-Cs that can potentially increase the 
differentiation capacity of these cells during certain periods of time 
(10 minutes/day for 1,7 and 14 days). The influence of LIPUS was 
assessed using different methods including cell count, ALP assay, DNA 
assay, real-time PCR, and immunophenotyping of cells derived from 
HUCPV-Cs by flow-cytometry analysis. 

Materials and Methods
This study has been approved by the Health Research Ethics Board 

at the University of Alberta, Edmonton, Canada (approval number 
6431, 2006). 

Cell culture

HUCPV-Cs were donated by Professor Joh E Davis at the 
University of Toronto at P0. HUCPV-Cs were obtained from patients 
undergoing full-term caesarean sections after obtaining standard 
patient’s consent and isolation of the cells were completed according to 
methods described by Sarugaser et al. [18]. 

HUCPV-Cs at passage 0 were thawed and seeded in T-75 cm2 
tissue culture flasks (Sigma Aldrich). The cell cultured in osteogenic 
media included Dulbecco’s modified Eagle’s medium with low glucose 
(DMEM-LG) (GIBCO, Invitrogen) supplemented with 1% antibiotic-
antimycotic (Sigma Aldrich), 15% fetal bovine serum (FBS), 5 mM 
β-glycerophosphate (Sigma Aldrich), 50 μg/ml L-ascorbic acid (Sigma 
Aldrich) [18], and 10–8 M dexamethasone (Sigma Aldrich). The cells 
were incubated at 37ºC in 5% CO2 and the initial cell density used was 
3.6 × 106/ml. Ten days were implemented for the expansion of HUCPV 
cells until P3 and the media were changed every 2–3 days. The cells 
at P3 were harvested and trypsinized when their confluence reached 
80% (4.2 × 106/ml) using 0.25% trypsin (GIBCO, Invitrogen). The 
cells at P4 were collected in 50 ml tubes, centrifuged, then plated into 
nine 6 well plates (Sigma Aldrich) at 2 × 104/ml. Four sets of “LIPUS” 
devices were obtained from SmileSonica Inc., Edmonton, Canada with 
4 transducers placed below the wells and coupled to the well bases 
with standard ultrasound coupling gel transducers that was previously 
calibrated. A total of 27 wells were treated by these LIPUS devices for 
10 min/day for 14 days where the ultrasound frequency, intensity, 
and duration were identical to that has been used for bone fracture 
repair experimentally and clinically [23-32].  Sham devices were used 
to treat the other 27 wells (Control Group) using the same transducers 
without turning on the machines. HUCPV-Cs were assessed for their 
differentiation capacity at day 1,7 and 14 consecutively. The ultrasound 
transducers generate 1.5-Mhz ultrasound waves of 200-µs bursts at 
an intensity of 30 mW/cm2 and pulse repetition frequency of 1 KHz. 
To maintain the consistency of electrical waveforms, the transducers 
were calibrated before and after applications using TDS1012C-EDU 
digital oscilloscope (Tektronix, Canada and an ultrasound power-
meter (model UPM-DT-1AV from Ohmic Instruments, Easton, MD, 
USA).  The incubator temperature was maintained at 37°C during the 
application of LIPUS. 

Cell count

HUCPV-Cs were washed using PBS (GIBCO, Invitrogen, 
Burlington, ON, Canada) then trypsinized. Cells and medium were 

collected in 15 ml tubes and were spun for 6 minutes at 600 rpm 
(Treated group separated from Control group). The supernatant was 
vacuumed away. Cells were counted using Beckman Coulter Machine 
(Beckman coulter Canada Inc., Burlington, ON, Canada). 

Alkaline phosphatase (ALP) activity assay

The colorimetric assay was used to determine HUCPV-Cs alkaline 
phosphatase (ALP) activity at the specified time points (at day 1,7 and 14 
consecutively) after application of LIPUS for 10 minutes and compared 
with the control group. The ALP was used as the biochemical marker 
for osteogenic cell differentiation [37-52]. The PBS was used to wash 
the cells which were then lysed with 2 mL of ALP buffer per well (0.5 
M 2-amino-2-methyl-1-propanol and 0.1% Triton- X-100, pH 10.5). 
One mL of lysed cells was used for DNA quantification assay two hours 
after the lysis. The ALP buffer was added in 1mg/ml to Phosphatase 
substrate (p-nitrophenyl phosphate) (Sigma, Oakville, ON, Canada) 
(1:1) ratio. 100 µl of substrate mixture and 100 µl of lysed cells were 
loaded to each well into 96 well plates for a final concentration of 1 
mg/mL. The changes in optical density (absorbance, 405 nm) were 
specified in a multi-well plate reader (ELX800 Universal Microplate 
Reader, Bio-Tek Instruments, Inc. in Winooski, Vermont, USA.) at 
periodic intervals 5, 10, 15, 30 minutes.

Cell proliferation and DNA quantification assay

 Measurement of DNA amount was performed using 1 mL of 
the lysed cell solution with the CyQUANT Cell proliferation kit 
(Molecular Probe, Invitrogen, Burlington, ON, Canada). Measurement 
of DNA quantity was performed by the CyQUANT cell proliferation 
kit assay (Molecular Probe, Invitrogen, Burlington, ON, Canada). Cell 
proliferation was determined by comparing cell’s DNA content for 
treated samples with untreated controls. The CyQUANT kit protocol 
requires binding of the cell with the dye solution, incubation for 30–60 
minutes, and then measurement of fluorescence was performed in a 
microplate reader (Fluoroskan Ascent, Thermo Labsystems, Finland). 
The assay was designed to generate a linear analytical response in 
a 96-well microplate (Molecular Probe, Invitrogen, Burlington, 
ON, Canada). The DNA standard provided with the CyQUANT kit 
was used to determine the DNA concentrations in each cell group. 
Quanification of DNA used a fluorescence plate reader (excitation at 
480 nm; emission at 527 nm) in accordance with the manufacturer’s 
instructions.

Immunophenotyping using flow-cytometry analysis

Cell surface antigen phenotyping assay was used for characterization 
of the HUCPVCs at passage 4 on days 1, 7 and 14 after pulsed with LIPUS 
and compared with control (sham) group. The following cell-surface 
epitopes were labeled with anti-human antibodies: CD31(PECAM-1) 
fluorescein isothiocyanate (FITC, BD Biosciences, Mississauga, ON, 
Canada), CD34-R-phycoerythrin (R-PE, BD Biosciences, Mississauga, 
ON, Canada), CD45-phycoerythrin (PE, BD Biosciences, Mississauga, 
ON, Canada), CD90 (Thy1) R-phycoerythrin (R-PE, BD Bioscience, 
Mississauga, ON, Canada), MHC I (HLA-A,B,C) R-phycoerythrin (R-
PE, BD Bioscience, Mississauga, ON, Canada), and MHC II (HLA--
DR) fluorescein isothiocyanate (FITC, BD Biosciences, Mississauga, 
ON, Canada) (Becton Dickinson; Beckman Coulter, Mississauga, 
ON, Canada), FITC-conjugated Isotype-mouse IgGa1 and PE-
conjugated Isotype-mouse IgGk1 served as secondary antibodies 
(control antibodies). A total of 10,000 labeled cells were acquired and 
analyzed using a FACScan flow cytometer CellQuest software (Becton 
Dickinson, Mississauga, ON, Canada). Details about these markers are 
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described in Table 1. The HUCPVCs were suspended and prepared 
using standard direct staining protocols [40,41]. 

Quantitative real time-PCR analysis (Q-PCR)

 Total RNA was extracted from each triplicate group of both 
LIPUS treated and sham (control) groups using the RNeasy Mini Kit 
(Qiagen, Mississauga, ON, Canada). Fluorometric quantification of 
RNA samples was performed at 260 nm using SYBRgreen (Molecular 
Probes, OR, USA), according to the manufacturer’s recommendation.  
One µg of the total RNA was used to synthesize single stranded DNA 
using the Omniscript Reverse Transcription kit (Qiagen, Mississauga, 
ON, Canada). The primers for real-time PCR were designed with 
Primer Express 2.0 software from Applied Biosystems (AB, Foster City, 
CA, USA.). TaqMan®Gene Expression Assays was used to perform RT-
PCR reactions (Applied Biosystems AB, Foster City, CA, USA.). The 
TaqMan®MGB probes and primers were mixed to a target concentration 
of 18 µM for each primer and 5 µM for the probe and the amplifications 
were carried out in a final reaction volume of 10 µl. Gene’s assays ID 
and gene’s symbols are explained in Table 2 the reaction mixtures were 
aliquoted into 96-well ABI reaction plate. The plates were then placed 
in an ABI Prism 7500 fast system V 1.4.0 Applied Bio-system q-PCR 
machine under the following conditions: stage 1 consisted of 95°C for 
10 min; stage 2 consisted of 40 cycles of 95°C for 15 s, followed by 60°C 
for 1 min. The q-PCR data were analyzed with SDS 7500 Fast system 
V.2.01 software (AB, Foster City, CA, USA.). 

Statistical analysis

Multi variate analysis of variance MANOVA was used to compare 
the expansion capacities of treated (LIPUS) group and control (sham) 
group using SPSS software package (version 16.0; SPSS Inc., Chicago, 
IL, USA).  Analysis of the flow-cytometry data and qPCR data were 
completed using two-way ANOVA and the differences were statistically 
considered significant at (p < 0.05). 

Results
The HUCPV-Cs were assessed on days 1, 7 and 14 after application 

of LIPUS as well as control group. The cell count in the LIPUS treated 
group was decreased on days 1 and 14, however, an increase noted on 
day 7 but not statistically significant. 

There was no difference in cell proliferation assay as reflected by 
DNA content equalized with ALP in the LIPUS treated group (p < 0.9). 

During osteogenic differentiation, no significant difference in DNA 
content could be detected between samples treated with LIPUS for 10 
minutes per day and the untreated control group. DNA content was 
0.5 fold higher on day 7 in the LIPUS treated group (0.018 ± 0.003), 
whereas it was lower on day 14 in the LIPUS treated group (0.015 ± 

0.006) compared with the control group. 

HUCPV-Cs expressed a non-significant increase of ALP activity in 
the LIPUS treated group compared to the control group (p < 0.9). ALP 
activity was slightly reduced on day 1 (0.018 ± 0.006), higher on day 
7 (0.018 ± 0.003), and slightly lower on day 14 (0.015 ± 0.006) in the 
LIPUS treated group compared to the control group (Figure 1).

Immunophenotyping (FACS) was performed to analyze cell 
surface markers on HUCPV-Cs at passage 4. Cells were gated according 
to size and expressed surface markers. HUCPV-Cs were negative 
for CD31 (found on endothelial cells, platelets, macrophages) and 
MHCII [HLA-DR]. MHCII antigens are cell surface markers involved 
in graft-versus-host disease and the rejection of tissue transplants in 
HLA mismatched donors. HUCPV-Cs were also negative for CD34 
(a hematopoietic stem cell marker) and CD45 (leukocyte common 
antigen). On other hand, HUCPV-Cs were strongly positive for CD90 
(a mesenchymal progenitor–specific marker) and moderately positive 
for MHCI [HLA-A, B, C] (recognized during graft rejection, found in 
all nucleated cells). HUCPV-Cs in the LIPUS treated group expressed 
a high level of CD90 on day 14 compared with control (Figure 2 and 
Table 3).

We further investigated our original hypothesis, that LIPUS-
expanded HUCPV-Cs will maintain their osteogenic differentiation 
potential, by assessing the expression of nucleostemin, PCNA, OCN, 
and OPN after equalization to the endogenous control gene GAPDH. 
Nucleostemin is a marker of undifferentiated human mesenchymal 
stromal stem cells and is involved in regulation of MSC proliferation 
[42]. HUCPV-Cs expressed lower levels of nucleostemin in the 
LIPUS treated group on days 1 and 7 compared to the control, with 
a nonsignificant higher expression on day 14 (Table 4). On the other 
hand, the level of PCNA was significantly higher in the LIPUS treated 
group on day 14 (p < 0.001). 

The levels of OCN expression were approximately 0.2 fold lower 
in the LIPUS treated group on day 1, 1.5 fold higher on day 7, and 
0.5 fold higher on day 14. These responses were, however, statistically 
nonsignificant. The level of OPN was 1 fold higher on day 14 (p < 0.001), 
whereas it was 0.2 fold lower on day 1 and almost comparable to the 
control group on day 7. These findings suggest that LIPUS treatment 
for 10 min/day may enhance osteogenic differentiation of HUCPV-Cs 
on day 14 and beyond (Figure 3 and Table 4). 

Discussion
MSCs have shown to be differentiated into osteoblastic lineage 

[16,18]. Osteogenic differentiation of MSCs was established in 
culture media containing ascorbic acid, β-glycerophosphate, and 
dexamethasone. It has been demonstrated previously that HUCPV-Cs 
are capable to be differentiated into osteogenic lineage in vitro after 
incubation in osteogenic media for 5, 21, and 28 days [16,18]. The 
stimulatory effect of LIPUS has been documented in many studies 
using a variety of cell lineages such as osteoblasts, chondrocytes, and 
marrow-derived stromal cells [43-46]. 

Our results showed a non-significant increase in HUCPV-Cs 
osteogenic differentiation capacity after 1 day of LIPUS application. 
On day 7 of LIPUS application, there have been increases in some 

Markers Description
CD90 Mesenchymal stromal cell marker
CD31 Endothelial cell marker
CD34 Hematopoietic cells and vascular endothelium marker
CD45 Differentiated hematopoietic cell marker
MHC I Recognized during graft rejection and found on all nucleated cells
MHCII A marker for B-lymphocytes, macrophages and dendritic cells

Table 1: Description of cell surface markers.

Gene Name Gene Symbol Assay ID
Endogenous Control Human GAPDH 

(Glyceraldehyde 3-phosphate 
dehydrogenase)

GAPDH 4333764F

Osteocalcin (OCN) BGLAP Hs00609452_g1
Osteopontin (OPN) SPP1 Hs00959009_m1

Proliferating cell nuclear antigen (PCNA) PCNA Hs99999177_g1
Nucleostemin (NST) GNL3 Hs00205071_m1

Table 2: Genes used for qPCR analysis.
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LIPUS treated group compared to the control was observed on day 14. 
These findings suggest that the stimulatory effect of LIPUS application 
to upregulate OPN gene expression in HUCPV-Cs occurs after 14 
days of daily. Lee et al. reported that LIPUS enhances cell viability 
by increasing expression of cell viability related genes such as PCNA 
[51-53]. Biomechanical stimulation and LIPUS were effective tools in 
improving repair of damaged cells and enhance the synthesis of matrix 
protein [53]. It has been reported that application of LIPUS for 20 
days to human mandibular fracture haematoma-derived cells (MHCs) 
significantly increase osteogenic gene expression and osteogenic 
protein [54]. Also, it has been reported that LIPUS enhances bone repair 
in animals, upregulate osteogenic genes expression, and significantly 
increase alkaline phosphatase and bone morphogenic protein after 25 
days of application [55]. Furthermore, it has been shown that LIPUS 
stimulation has profoundly enhanced the multifunctional effect that is 
relevant to alveolar bone regeneration which plays an important factor 
in periodontal healing [56]. They reported that human alveolar bone-
derived mesenchymal stem cells (hABMSCs) treated with 50 mW/cm2 

show a significant increase in osteogenic genes expression, alkaline 
phosphatase, and calcium deposit compared to untreated group after 10 

osteogenic markers, namely OCN and ALP, and there was a significant 
increase in OPN on day 14. No significant differences in cell count, 
DNA content, or immunophenotypic characteristics were detected 
between the LIPUS treated preparation and a sham treated control. 

DNA content, ALP activity, and calcium content were used as 
alternate measures for cellular activities in some experimental studies. 
The expression of these has been shown to decrease by mechanical 
stress, such as stretching and loading [47]. Similarly, it has been 
shown that intermittent loading of mechanical stress reduces the 
activation of mechanosensitive cation channels on osteoblast-like cells 
[48]. Intermittent cyclic loading has been used as a form of applied 
mechanical stress [47,48]. Some of these findings were consistent with 
our results; that is, the down-regulation of some cellular markers after 
exposure to LIPUS [47-50]. 

Non-significant increases of CD90 and nucleostemin on day 14 
were noted in the LIPUS treated group. In addition, non-significant 
changes in levels of OCN were observed: OCN was approximately 0.2 
fold lower on day 1, 1.5 fold higher on day 7, and 0.5 fold higher on day 
14. Statistically significant higher expression of PCNA and OPN in the 

0

0.005

0.01

0.015

0.02

0.025

Day1/10 min Day7/10min Day14/10minAL
P 

ac
tiv

ity
 (u

ni
t/

ul
)/

 D
N

A 
co

nc
. 

(u
g/

ul
) 

Time 

L

C
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Figure 1: HUCPV-normalization of ALP/DNA results after application of LIPUS 10 min/day (days 1, 7, and 14) in Osteogenic media.

Flow-cytometry of HUCPV-C (isotype IgG, CD31, CD90, CD34, CD45, MHCI, and MHCII) treated with LIPUS 10 min/day on days 1, 7, and 14 in basic media; 
differences between LIPUS (L) and control (C). Cells were at P4 (n=27), data represent quantification from 3 biological replicates, error has indicated standard 
deviation (* indicates high CD90 expression which referred to HUCPV-Cs maintaining primitive progenitor characteristics).

Figure 2: Flowcytometry analysis HUCPV-Cs (unstained, CD31, CD90, CD34, CD45, MHCI and MHCII) treated LIPUS 10 min or at day 1,7 and 14) OST media.
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OPN gene expression on day 14, respectively. These results suggest 
that LIPUS has stimulatory effect on osteogenic differentiation of 
HUCPV-Cs especially after 14 days of application. More studies may 
be conducted to investigate the possible effect of different LIPUS 
frequencies, power or treatment time on the osteogenic differentiation 
of HUCPV-Cs.
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minutes /day application for 3 weeks [56]. In summary, future studies 
may aim to investigate the possible stimulatory effect of increasing 
LIPUS application time to 20 minutes/day for 20 days or more for 
the possibility that more significant osteogenic gene expression might 
occur.

Conclusion
This study explored the effect of daily application of LIPUS for 10 

minutes/day for 1, 7 and 14 days on the osteogenic differentiation of 
HUCPV-Cs. The results of this study are as follow: HUCPV-Cs treated 
with LIPUS demonstrate increase in CD90 level at day 14 compared 
to untreated group. Moreover, LIPUS application to HUCPV-Cs 
stimulated showed statistically significant increase in PCNA, and 

Markers / 
OST 

Day 1 Day 7 Day 14 
L Mean ±

SD C Mean ± SD p value L Mean ± SD C Mean ± SD p value L Mean 
± SD C Mean ± SD p value 

Isotype IgG 9.3 ± 2.9 8.4 ± 2.5 0.5 18.5 ± 4.6 16.7 ± 9.3 0.6 10.1 ± 9.6 4.5 ± 2.5 0.6
CD31 11.6 ± 3.4 14 ± 1.8 0.3 19 ± 2.5 22 ± 14.4 0.3 14.1± 8.2 7.3 ± 2.2 0.3
CD90 2766.7 ± 156.9 2854.5 ±  549.4 0.7 1731.3 ± 732.9 1601.1 ± 771.5 0.9 516.7 ± 292.5 370.7 ±162.5 0.9
CD34 11.5 ± 6.2 9.4 ± 1.5 0.9 21.6 ± 10.9 19.8 ± 12.4 0.9 7 ± 4.9 4.6 ± 1.6 0.9
CD45 9.5 ± 3.6 19.4 ± 15.1 0.3 24.4 ± 14.6 30.5 ± 30 0.9 7.6 ± 5.4 4.5 ± 1.1 0.9
MHC I 211.5 ± 66.5 294.5 ± 177.6 0.7 170.3 ± 164.7 155.9 ± 157.7 0.9 43.6 ± 24.8 42.7 ± 22.7 0.9
MHC II 40.1 ± 25.5 34.4 ± 27.2 0.7 26.5 ± 3.4 21.9 ±16.2 0.8 13.9 ± 7 14.9 ± 8.7 0.8

Table 3: Comparison of cell surface markers expression of flow-cytometry results of HUCPV-SC (isotype IgG, CD31, CD90, CD34, CD45, MHCI, and MHCII) treated with 
LIPUS 10 min/day on days 1, 7, and 14: difference between LIPUS (L) and control (C) in Osteogenic media. The results expressed as Mean ± SD.

Genes / 
OST 

Day 1 Day 7 Day 14 

L Mean ± SD C Mean ±
SD p value

L
Mean ±

SD

C
Mean ±

SD

p
Value

L Mean ±
SD C Mean ± SD p value

GAPDH 0.00 ± 0.00 0.00 ± 0.00 0.8 0.00 ± 0.00 0.00 ± 0.00 0.9 0.00 ± 0.00 0.00 ± 0.00 0.9 
NST 1.23 ± 0.16 1.32 ± 0.19 0.6 0.39 ± 0.42 0.66 ± 0.57 0.9 0.95 ± 0.10 0.33 ± 0.05 0.9 
OCN 0.79 ± 0.19 0.87 ± 0.12 0.7 3.33 ± 3.54 1.18 ± 1.39 0.08 0.62 ± 0.29 0.22 ± 0.07 0.9 
OPN 0.43 ± 0.21 0.57 ± 0.42 0.4 0.54 ± 0.40 0.56 ± 0.65 0.9 21.84 ± 15.64 10.25 ± 3.61 0.001 

PCNA 0.87 ± 0.15 0.91 ± 0.04 0.4 2.76 ± 2.01 2.92 ± 3.62 0.9 0.98 ± 0.10 0.51 ± 0.05 0.001 

Table 4: Comparison of Q-PCR expression of cell genes nucleostemin, osteocalcin, osteopontin, and PCNA after their equalization to the endogenous control gene 
(GAPDH) treated with LIPUS (L) 10 min/ day on days 1, 7, and 14: difference between LIPUS (L) and Control (C) in Osteogenic Media (OST). The results expressed as 
Mean ± SD.

qPCR comparison of levels of nucleostemin, osteocalcin, osteopontin, and PCNA after their equalization to the endogenous control gene (GAPDH) between LIPUS 
(L) and control (C) on days 1, 7, and 14 in osteogenic media. Cells were at P4 (n=27*3), data represent quantification from 3 biological replicates, error has indicated 
standard deviation. (* indicate statistically significant)

Figure 3: Q-PCR of HUCPV-Cs (NST, OCN, OSP and PCNA equalized to GAPDH) treated with 10 min/ LIPUS at Day 1,7 and 14- OST Media.
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